
Introduction
Mashup Purpose & description
The purpose of the mashup is to provide an easy format to view and gain information on
conflicts around the world. The application shows an interactive map with the location of
conflicts, and when selected, displays the latest information, images and tweets that are
relevant to the selected conflict. These images and tweets are shown in a list on the left-hand
side of the page, and the map with markers is shown on the right-hand side of the page. A map
like this is important to increase the awareness of both past and current events, since larger
conflicts attract the most news attention and the news cycle is quick to move on, especially
when the occurring events have minimal impact on the lives of those in the “first-world”.
Similar maps do exist such as the Global Conflict Tracker run by the Council on Foreign
Relations, which serves a very similar purpose. It doesn’t show recent tweets about the conflict
but does have more information and a nicer UI. Additionally, the application has a feature which
determines the current location of the user and shows the conflicts closest to them. This in the
hopes that having unknown conflicts that are so close may trigger them to explore the site and
end up learning more about our world.

Services used
Twitter Recent Search API (v.2)
Twitter is a social media platform where users can post short form text-based content,
occasionally accompanied by media. The API returns a collection of relevant Tweets from the
last 7 days matching a specified query. This query can filter based on the terms, hashtags, media
type, tweet type, language, time, geocoding, polls and relevancy. The results contain the tweet,
author, time, media links, location, metrics and more.

⦁ Endpoint: https://api.twitter.com/2/tweets/search/recent

⦁ Docs: https://developer.twitter.com/en/docs/twitter-api/tweets/search/introduction

ACLED REST API v2.5
ACLED is the Armed Conflict Location and Event Data Project, which collects data on reported
conflicts and makes weekly updates on the state of the world. The API returns a collection of
conflicts that have or are occurring all over the world. The conflict data includes the date,
location, type, actors, fatalities, source, description and more. Queries can filter based on all
entries of returned data.

⦁ Endpoint: https://api.acleddata.com/{data}/{command}

⦁ Docs: https://www.acleddata.com/wp-content/uploads/dlm_uploads/2017/10/API-
User-Guide.pdf

Flickr Photos Search API
Flickr is a photo-sharing platform and social network where users upload photos for others to
see. The API returns a collection of images and their meta-data based on a query. The query
method of search allows for searching by authors, tags, dates, geo-tagged status, media type
and text, as well as be sorted.

1

⦁ Endpoint: https://api.flickr.com/services/rest/

⦁ Docs: https://www.flickr.com/services/api/flickr.photos.search.html

Leaflet API V1.8.0
Leaflet is an open-source JavaScript library for interactive maps. The API provides an interactive
map that can be modified to display information. It gathers the map tile data from the
OpenStreetMap API to show streets and detailed information. The map can be edited by adding
pins, shapes, areas and popups.

⦁ Endpoint: https://unpkg.com/leaflet@1.8.0/dist/leaflet.js

⦁ Docs: https://leafletjs.com/reference.html

OpenStreepMap API v0.6
The open street map API returns the titles that show the streets and places that are in the
leaflet map. The information can be returned in a range of formats. Leaflet handles the calls to
the API to gather the tiles.

⦁ Endpoint: https://tile.openstreetmap.org/

⦁ Docs: https://wiki.openstreetmap.org/wiki/API_v0.6

IP API
The IP-API returns an estimated location of an IP address sent to it. The location returned can
include data about country, city, latitude, longitude and isp in either XML, XML, PHP, CSV or
JSON format.

⦁ Endpoint: http://ip-api.com/

⦁ Docs: https://ip-api.com/docs/

Persistence Service
S3 was used for the persistent view counter. S3 is an object storage service that uses buckets as
containers for objects, with each object having a key which is the unique identifier for the
object within the bucket.

⦁ S3: https://aws.amazon.com/s3/

Docker was used to storing the image of the server. Using a dockerfile an image of the server
was created. These image can then be downloaded and run from dockerhub as a container to
run the server. To pull the image use the link: Declanbarrett/conflict-mapper

Mashup Use Cases and Services
User Story – Gather Conflict Tweets

As a Journalist
I want To find tweets about conflicts in specific geographic locations
So that I can include the tweets in articles I write

The Leaflet and Open Street Map APIs are called on the client side to create the map that is
shown to users. The client-side calls the server side to serve all ACLED conflicts by calling the

2

ACLED API. The client side uses the list of current conflicts with latitude, longitude and image to
create markers on the map. When a marker is selected it then displays the further ACLED
information in the left-hand panel as well as calls the server API to call Twitter with the name of
the conflict. The Twitter API returns a list of 10 current tweets which are displayed in the left-
hand column.

User Story – Gather Nearby Conflicts
As a Geography Teacher
I want To find wars that are closest to my students
So that I can educate them on current international politics in an engaging way

The Leaflet and Open Street Map APIs are called on the client side to create the map that is
shown to users. Once the “Near Me” button is pressed the HostIP API is called by the client side
to gather the IP address of the user. The IP address is sent to the server which makes the same
call except uses the latitude and longitude returned to call the ACLED API and an inaccuracy
constant to get the closest conflicts. The ACLED API returns a list of conflicts and their locations.
The server receives this and calls the FLICKR API to get a single image for each conflict. These
locations and images are sent in response to the client side to be shown using markers on the
leaflet API as well as displayed in the left-hand column.

3

User Story – Gather Conflict Images
As an Expat
I want To find images of conflicts from the country I moved from
So that I can sense the level of destruction that has occurred

The Leaflet and Open Street Map APIs are called on the client side to create the map that is
shown to users. The client-side calls the server side to serve all ACLED conflicts by calling the
ACLED API. The client side uses the list of current conflicts with latitude, longitude and image to
create markers on the map. When a marker is selected it then displays the ACLED information
in the left-hand panel as well as calls the server to call Flickr with the name of the conflict. The
Flickr API returns a list of 2 relevant images which are displayed in the left-hand column, above
the Tweets.

4

5

Technical breakdown
Architecture
To begin the project is split into two separate parts: the front end and the back end. The front
end uses React JS while the back end uses Express. Express serves the React front end build via
Express Static allowing the use of React Router on the front end. There are four different API
calls for the client side, located in the API directory. Conflicts is to gather the conflicts from the
server side, counter to gather the view counter from the server side, info to gather the articles
from the server side and host to gather the IP address of the client. Two components have been
separated from the page, “Article” and “ConflictList”. These were separated to reduce the
clutter on the “MainPage”. “MainPage” is the main page of the application which contains the
map, title of the applications and buttons at the top. “Article” displays the information
regarding a conflict on the left and “ConflictList” displays the map markers on the right.

6

App contains the ReactRouter which routes between “MissingPage” and
“MainPage”. Missing page is a very empty page stating that the application is located at
“/Home” with a link to go there. This was simply to stop the “MainPage” being returned on
broken API calls thus to signify that something has indeed gone wrong.

On the express server side there are three routers, “acled’, “articles” and “counter”. “Index” is
used as the main entrance to the express app and uses these routers for the functionality of the
app: “acled” handles “/api/acled/:number” and “/api/acled/:ipaddress/:number” to gather
conflicts, “articles” handles “/api/articles/:location/:type/:country” to gather articles and
“counter” handles “/api/counter/add” to update and gather the view counter.

Data Flow
Upon server start-up, an S3 bucket is created if it isn’t already to later use as a view counter
store. At / is a very basic “Missing Page” 404 page with a link the user can use to go to the
/home “Main Page” page where the main application resides.

Upon entering the main page multiple API calls are immediately
made separately to one another. The ‘counter’ express API is called which when received by
express at /api/counter/add and immediately attempts to retrieve the S3 bucket and get the
“viewcounter” object. If this object is returned then it grabs the count, adds 1, pushes the new
view count to S3 and returns the view count to the client. If the view counter object is missing
then it creates a new one starting at 1, pushes the new view count to S3 and returns the view
count of 1 to the client.

The client requesting conflicts via express at “/api/acled/” with no IP address listed also occurs
immediately. This requests the ACLED API for the first 50 conflicts to display, with an array of
conflicts returned being slightly modified and returned to the client. All API requests use Axios.

Leaflet and React-Leaflet are in the node modules so the leaflet API isn’t explicitly called but it is
still gathered from the leaflet API on start-up. The tiles of OpenStreetMap are called by leaflet
to display as the map moves around. Once the ACLED conflicts arrive at the client the locations
are used to show markers on the map.

7

If the “conflicts near me” button is pressed then the IP API is called directly from the client. This
doesn’t use a query cause the IP API gets the IP of the caller. This IP is then used in a call to the
conflicts via express at “/api/acled/” which makes a separate call to the IP API using the IP to
gather the location of the client. After this, the “/api/acled/” route collects all ACLED API
conflicts (max 500) and then the distance is calculated between the location of the conflict and
the client on the server with the closest conflicts then returned to the client and displayed on
the map. If the “all conflicts” button is pressed then the IP address is deleted and the
“/api/acled/” route is called without the IP address.

When a marker on the map is pressed the “/api/articles/”
route is called with the location, type and country of the conflict selected, gathered from the
returned ACLED object from the ACLED API call, thus forming the “mash-up”. The articles route
calls both the Twitter and Flickr APIs. First, the Twitter API is called with the location and type
combined. If this doesn’t return any tweets then just the location is used to find tweets. After
this, then the Flickr API is called with the location and if no images are returned then the type is
used. Both the tweets and images are then returned to the client and the tweets, images and
existing ACLED conflict information are displayed to form an article in the menu on the left-
hand side.

Errors that occur when
requesting the express API are set usually modified before displaying that something has gone
wrong to the user. Custom errors on the server side such as both tweets and images being
empty set the status message in the response header to enable the specific error to be
displayed by the client. Such an example is the error with the ACLED API gathering of regular
conflicts which is simply printed out in the server log and a sanitized version returned to the
client

Deployment and the Use of Docker
Deployment was able to be done via Docker. The docker base image used is node (Figure A).
Originally a Dockerfile with ubuntu as the base image that installed node and npm during the
docker build but this took longer than simply using a node image base. Then “apt-get update
&& apt-get install -y” is used to update all the existing packages in the image. Both the client
and server are copied into the image. To reduce build time and make sure only the correct

8

dependencies are included, the node_modules and react build are deleted prior to creating the
image. The working directory is set to the client to then install the node_modules and create a
build to serve. Afterwards, the working directory is set to server to install the server-side node
modules. Port 3000 is exposed since it’s a node application. When the image is used to make a
container the index.js file is used to run the application.
DockerHub was used as the repository to store the docker image. The docker image is located
at declanbarrett/conflict-mapper but is set to private to prevent plagiarism.

A custom run command was created which is used to set the AWS and API keys which is located
in figure 3.
Test plan
Manual testing was performed. The application is designed that the amount of user input is
quite limited. Due to the API routes being REST and being exposed it can be queried directly to
test both client and server side.

Type Task Expected Outcome Result Screenshot/s
(Figure B)

Positive Update View Counter Updated counter displayed, S3
updated with new value

Pass 1

Click All Conflicts
Button

Conflicts displayed as markers on
map

Pass 2

Click Conflicts Near Me
Button

Closest ACLED conflicts displayed as
markers on map nearby to the user

Pass 3

Click Conflict Marker
On Map

Article displayed showing
information, images and tweets

Pass 4

Have Conflicts Load by
Default

Current conflicts load by default
when the page is loaded

Pass 5

Negative Handle No Tweets &
Images

Show “It is not possible to generate
an article for this conflict” error

Pass 6

Handle Server Side
Offline

Show “The conflicts backend may be
offline” error in red

Pass 7

Handle IP-API offline Show “Please turn off your ad-
blocker” error in red

Pass 8

Handle AWS
credentials wrong

Show AWS error on server log and
show “unknown” as the view count

Pass 9

Handle Flickr
credentials wrong

Show “our article generator is
having trouble” as error and print
actual error to server

Pass 10

Handle Twitter
credentials wrong

Show “our article generator is
having trouble” as error and print
actual error to server

Pass 11

Handle ACLED
credentials wrong

Show “ACLED is having trouble” as
error and print actual error to server

Pass 12

Handle / Being Called Show the missing page screen Pass 13
Edge Handle No Tweets but

images
Show only images with no tweet
title

Pass 14

9

Handle No Images but
tweets

Show only tweets Pass 15

Handle multi-word
queries

Convert call to HTML encoding,
retrieve results

Pass 16

Handle rapid clicking Finish call list with correct state Pass 17
NF Gather ACLED within 7

seconds
A time below 7000ms displayed in
the outcome

Pass 18

Gather Article within 5
seconds

A time below 5000ms displayed in
the outcome

Pass 19

Gather view counter
within 1 second

A time below 1000ms displayed in
the outcome

Pass 20

Difficulties / Exclusions / unresolved & persistent errors /

At the time of writing everything specified in the assignment has been included and is
functional. The main problems that persist with the application are content relevancy.

There were a lot of minor errors that were handled throughout the development of the conflict
mapper. To begin with it was difficult to get my hands on an ACLED API key as they requested I
make a formal enquiry which needed to be reviewed. Thankfully they thought the usage of the
API was acceptable.

ACLED is only able to serve 500 lines of objects to me as limited by my level of API access and
also changes the content every week. This results in some weeks where the “closest” conflict is
in Africa and some where it is in New Zealand, making it appear on some queries that the
button doesn’t work, but when scrolling out find out it does.

Most tweets from foreign countries are unsurprisingly in another language making it difficult to
tell what is being said without translation. Flickr also provides images which are not always
relevant. Since only two images are retrieved there might be a lot of really good images
available that are simply not shown since pictures of cats or crystals share similar names and
thus are presented. There are also foreign place names which sometime return ‘lewd’ imagery
from flickr which may not be appropriate to include in classrooms.

The choice to use leaflet in combination with React was difficult as they do not play well
together, thus React-Leaflet was used to mitigate this. This prompted other problems since the
documentation for React-Leaflet is scarce. Implementing the markers displayed on the map was
relatively easy but having the map fly to them was difficult.

The original “host ip” API that I was using too often returned an error as a result very early in
development thus the switch was made to “IP API”. A lot of time was spent dealing with error
handling at the last minute when the test plan needed to be completed, combined with job
assessments and other assignments causing a level of stress that caused me to have a mental
breakdown and be unable to continue work.

Extensions
To make the application better the conflicts should probably be moved to a Redis or S3 Cache.
The ACLED API is incredibly slow even when requesting small quantities of queries. The conflicts

10

near me also collects all 500 available conflicts and compares them manually making this call
extremely slow.

Further investigation into optimizing Flickr and Tweet relevancy needs to be done since a lot of
articles retrieved could not be used by journalists. Having a filter which is either using a black or
white list to remove results which are not appropriate could be used, but this would increase
response times.

The main upgrade that needs to occur is the use of a translation API for the tweets as serving
tweets in a foreign language makes it basically impossible for students or other end users to
engage and care about those being affected by the conflict since they cannot understand what
is being said.

User guide
To start the server run the docker run command in figure 3 with the correct AWS and API keys.
The server should automatically run in the container once it has been created.

The application should be opened to /Home on port 80 (HTTP) as this is where the main
application is. Otherwise, the missing page screen will be displayed and the link to the
application should be followed.

The application will open to the home page

11

The entire page can be navigated with the mouse.
Click and drag to move around the map and use the scroll wheel or the + and – symbols to
zoom in and out. The page counter is displayed underneath the title. By default, the page is
loaded with the first 50 conflicts which is being labelled as ‘all’. Clicking the ‘conflicts near me’
button will load the conflicts nearest to the user and send the user to their location. Sometimes
the zoom in is too much but the closest conflicts are still loaded once zoomed out. In this case,
the closest conflicts this week to Australia were in Africa. This changes frequently.

To display ‘all conflicts’ again the all conflicts
button can be pressed.

Each of the blue icons on the map can be selected to generate an article as is stated on the left-
hand side. This left-side menu is scrollable. If the pictures extend beyond the page, then the
menu can be scrolled down to see the tweets. This makes up the entirety of the application.

12

Analysis
Question 1: Vendor Lock-in
The replacement of the APIs used would take a significant rework but would be able to be done.

To replace OpenStreepMap and Leaflet would not be too difficult as there are a lot of map API
providers. Google Maps API, Mapbox API, Fencer, Foursquare API are all examples of APIs that
have basic free tiers that could be used to replace the map used. However, if the load on the
service increases then these would begin with cost money (RapidAPI, 2022a). The Google Maps
API is the API that the most similar service (UCDP) provides to show their conflict information
which was revealed monitoring the network traffic (UCDP, 2022a). A completely free
alternative to leaflet is OpenLayers which provides even more functionalities than Leaflet in
terms of map customization and layering (OpenLayers, 2022). The same latitude and longitude
data of conflicts could be used with these options.

IP API was already switched out from Host IP midway through the development of the
application and is free (HostIp, 2022). However, it produced substandard results thus a better
alternative along the lines ipinfo or geoip-db could be used for IP lookup. Instead of violating
the clients privacy without their permission, the HTML5 geolocation API can be used which asks
the client whether they want their location shared. This is what the majority of other
applications do to ethically gather the user’s location information, is free and will be a user
experience that a lot of users are used to. However, as of Chrome 50, this will only work with
HTTPS applications thus the site would need to be updated (Amadi, 2022).

The ACLED API is the most difficult to replace as there are very few APIs that cover conflicts and
global politics. The only other similar API is the UCDP API which is free (UCDP, 2022b). This API
provides similar data such as the coordinates, location, actors, types of violence and dates. This
information would be enough to be used in the API calls to gather the images and tweets, as
well as enable the markers to be displayed on the map. However, this API has little
documentation and also does not produce a summary of the conflicts, meaning this information
would be missing from the article and need to be sourced elsewhere.

The Flickr and Twitter APIs are both “social media” APIs with Flickr focused on images and
Twitter focused on text-based content (RapidAPI, 2022b). Both of these could be swapped out
with any other social media API to share insights on the conflicts that are being gathered.
Facebook has both Graph API and Pages API which can gather public posts and pages based on a
search query. Within graph, images can also be gathered allowing the articles to be completely
replaced with the use of Facebook APIs (Facebook, 2022). Alongside Facebook, Instagram also
has a Graph API of its own able to search for public posts and gather the information and
images pertained within. Alternatively, and more informatively, the YouTube API could be used

13

to search for relevant informational videos on the conflicts and provide these videos to watch in
the left-hand column (YouTube, 2022). This would be more focused on the education use case
rather than generating articles for journalists to use. All of the above options are free and would
not impact the user experience greatly.

Changing the persistence service from S3 would not be too difficult. There is a range of
companies that provide similar object storage solutions. The main providers such as Google and
Microsoft both have their blob storage equivalents such as Microsoft Azure Blob and Google
Cloud Platform Cloud Storage. GCP has a free tier similar to AWS while Azure is pay-as-you-go
immediately. The code to create a bucket in GCP is quite similar to AWS with ‘createBucket’ and
‘file’ and ‘save’ used to create a bucket and save a file with contents. Even setting the
credentials is similar with Google needing the “GOOGLE_APPLICATION_CREDENTIALS” set with
the correct key (Google Cloud, 2022). There are also a lot of smaller providers that offer S3
clones.

However, using blob storage for an object which is less than a kb is a bit overkill thus a memory
cache view counter updating the value in a key-value pair could also be suitable, be quicker and
act in a very similar way, if it was persistent. Redis with Elastic-cache could be suitable if
Append-Only-Files is turned on which re-runs all writes on the cache data, but this isn’t available
on newer versions of Redis nor does it protect against all failure scenarios. Unsurprisingly using
a non-persistent data store to attempt to store persistent data isn’t a great idea and shouldn’t
be attempted (Amazon, 2022a)

Lastly, there are the database options, both SQL and No-SQL. Using SQL would require the
creation of a database and table with a column name of “counter” and a single row with the
current count. This would be with AWS RDS, Azure SQL Database or GCP Cloud SQL with an
RDBM such as MySQL running. As relational databases have difficulty scaling out, it would be
more appropriate to use a No-SQL database. DynamoDB, MongoDB Atlas, Azure Cosmos DB or
Google Cloud Firestore. These offer a key-value solution similar to Redis with the persistence
needed for a view counter (Amazon, 2022b). As schema is determined per item and the object
being stored in S3 is already JSON with ‘view-counter’ being the key, there would not be a
change in approach other than the specific functions required to create a database, get and add
the key and value.

Question 2: Container Deployment
Under the assumption that a service to manager container deployment is being used for a more
substantial version of the application, there are very few downsides to using docker in
comparison to VMs.

The downside of using docker in this scenario is that it is already running on a virtual machine
meaning that docker and each container are adding overhead that would not normally be there
if the application was running directly on the virtual machine. Having multiple containers run on
the same virtual machine also means that port collisions become a problem as multiple
containers could be attempting to serve on the same outward-facing port. When ‘docker run’ is
used to create the container a port mapping is specified, and it appears docker only allows 1 to
1 port mapping. With a service to manage container deployment, it may be possible to have
each of these containers given a separate port or separate IP address and this service map port
80 HTTP requests to multiple containers. One of these services such as the Nginx gateway, a

14

reverse proxy that allows for requests to be diverted to multiple containers (S, 2022). There is
also a security risk with using docker as it has process-level isolation which very slightly less
secure than the full virtualization that a VM offers. The application was built in WSL Ubuntu
thus it is indeed compatible with Linux.

The benefit to using docker rather than the virtual machine for this application is that even
when ‘substantial’ it is still not a resource-intensive application and thus benefits from a large
quantity of smaller servers. A lot of the client-to-server calls are only waiting due to the external
APIs being slow or requested multiple times to guarantee a response. Having only one
application running per EC2 instance would be a waste of the EC2 instance’s CPU and main
memory since they could be more efficiently used by Docker. Each container is 1.5GB due to the
node modules taking up most of that space with the standard 8GB of space on the EC2 micro
meaning at least four containers could be running simultaneously. Docker can support many
more containers than VMs as it doesn’t need to maintain an entire OS stack, with attempting to
run a VM on a VM not being a great idea. Running the application multiple times on the same
EC2 instance is possible but creates security risks due to there not being a proper separation
between application instances. Rebooting is also quicker with docker (Clancy, 2022). If the
application became incredibly large and resource intensive from expansion, then at that point
running one docker container rather than running directly on the VM is a waste and the VM
would be used directly.

With an expanded application this would need to remain stateless and thus a multitude of
storage solutions would be needed to improve the user experience. An in-memory cache such
as Elastic-cache and Redis would be used for the most frequent API calls, which as it currently
stands would be the 50 ACLED conflicts since these are called every time the application loads
(Amazon, 2022c). For the slightly less used API calls the S3 datastore could be used to be
another ‘cache’ for the lists of conflicts which are larger or the most requested Flickr images
and tweets, especially for conflicts that have been gaining a lot of media attention. To
determine which information to cache and where to cache, a unique request counter could be
added which uses either object or NoSQL database which could be checked against frequently
to determine what is the most used.

To serve the client-side React application, a CDN could be used since all of this content is static
and is currently being served through express static. This will improve the page load times and
reduce demand for the software containers. If static images were added to the site they would
be included here, since the only static images currently are the tab icons (Amazon, 2022d).

To support the addition of user accounts as well as user sessions and other features that would
be added, the view counter and all of the data related to these features would be included in a
DynamoDB database. Even an upgraded version of the application would not need ACID since it
is not incredibly important that passwords and other new data are updated immediately, but is
important that they are eventually updated. The main reason to use NoSQL is the scalability
that SQL databases either cannot provide or have performance impacts due to their difficulty
with sharding (ACG Team, 2022). DynamoDB will be able to provide availability and partition
tolerance while sacrificing consistency which is important when considering scaling out to a
global context. DynamoDB also has atomic operations to prevent overwrite problems. Using a
single major provider will also improve performance slightly as each major provider invests

15

heavily in improving the latency between their internal server farms.

References
ACG Team. (2022). ACID and AWS DynamoDB transactions: The ins and outs of all-or-nothing. A
Cloud Guru. Retrieved 20 September 2022, from
https://acloudguru.com/blog/engineering/acid-aws-dynamodb-transactions.

Amadi, L. (2022). Getting Users locations, The Easy Way For Developers.. Medium. Retrieved 20
September 2022, from https://medium.com/@w3bh4ck/different-ways-to-get-a-users-
location-bef34f732fec.

Amazon. (2022a). Append only files (AOF) in ElastiCache for Redis. Retrieved 20 September
2022, from https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/RedisAOF.html.

Amazon. (2022b). What Is a Key-Value Database?. Amazon Web Services, Inc. Retrieved 20
September 2022, from https://aws.amazon.com/nosql/key-value/.

Amazon. (2022c). Elastic-Cache Redit. Retrieved 20 September 2022, from
https://aws.amazon.com/elasticache/redis/

Amazon. (2022d). Cloudfront. Retrieved 20 September 2022, from
https://aws.amazon.com/cloudfront/

Clancy, M. (2022). Docker Containers vs. VMs: A Look at the Pros and Cons. Backblaze Blog |
Cloud Storage & Cloud Backup. Retrieved 20 September 2022, from
https://www.backblaze.com/blog/vm-vs-containers/.

Facebook. (2022). Overview - Graph API - Documentation - Facebook for Developers.
Developers.facebook.com. Retrieved 20 September 2022, from
https://developers.facebook.com/docs/graph-api/overview.

Google Cloud. (2022). Create storage buckets | Cloud Storage | Google Cloud. Google Cloud.
Retrieved 20 September 2022, from https://cloud.google.com/storage/docs/creating-
buckets#storage-create-bucket-nodejs.

HostIp. (2022). Lookup IP Address Location With Hostip.info. Hostip.info. Retrieved 20
September 2022, from https://www.hostip.info/use.php.

OpenLayers. (2022). OpenLayers - Welcome. Openlayers.org. Retrieved 20 September 2022,
from https://openlayers.org/.

RapidAPI. (2022a). The Top 10 Mapping & Map APIs (for Developers in 2018) | RapidAPI. The
Last Call - RapidAPI Blog. Retrieved 20 September 2022, from https://rapidapi.com/blog/top-
map-apis/#:~:text=%EF%BB%BF-.

RapidAPI. (2022b). 18 Top Social Media APIs & Free Alternatives List - September, 2022 |
RapidAPI. Rapidapi.com. Retrieved 20 September 2022, from
https://rapidapi.com/collection/social-media-apis.

S, V. (2022). Want multiple Docker containers on the same port? Here's how. Bobcares.
Retrieved 20 September 2022, from https://bobcares.com/blog/docker-multiple-containers-

16

same-port/.

UCDP. (2022a). UCDP - Uppsala Conflict Data Program. Ucdp.uu.se. Retrieved 20 September
2022, from https://ucdp.uu.se/country/365.

UCDP. (2022b). UCDP Application Programming Interface (API). Ucdp.uu.se. Retrieved 20
September 2022, from https://ucdp.uu.se/apidocs/.

YouTube. (2022). YouTube Data API | Google Developers. Google Developers. Retrieved 20
September 2022, from https://developers.google.com/youtube/v3. Appendices

Appendix
Figure A: Dockerfile

17

Figure B:

1

18

2

3

19

4

5

6

20

7

8

9

10

21

11

12

13

14

22

15

16

17

18

19
20

Figure 3:

docker run \

23

-e AWS_ACCESS_KEY_ID=" " \
-e AWS_SECRET_ACCESS_KEY=”" \
-e AWS_SESSION_TOKEN=" " \
-e ACLED_KEY="" \
-e TWITTER_KEY=" " \
-e FLICKR_KEY="" \
-p 80:3000 \
-it declanbarrett/conflict-mapper

24

