

2020

Declan Barrett

N10219358

5/10/2020

CAB230 Stocks API – Client Side

Contents
Introduction .. 2

Purpose & description... 2

Completeness and Limitations .. 3

Use of End Points .. 4

/stocks/symbols .. 4

/stocks/{symbol} ... 4

/stocks/authed/{symbol} .. 4

/user/register .. 5

/user/login .. 5

Modules used .. 5

Ag-grid-react ... 5

Bootstrap .. 5

Reactstrap ... 5

Chartjs ... 5

React-Chartjs-2 .. 6

Chartjs-plugin-zoom .. 6

jsonwebtoken.. 6

Application Design .. 7

Navigation and Layout .. 7

Technical Description .. 8

Architecture .. 8

Test plan .. 8

Difficulties / Exclusions / unresolved & persistent errors... 9

Extensions ... 9

User guide ... 9

References .. 14

Appendix ... 15

Introduction

Purpose & description
The STONKS stock analyst app is designed to allow users to view and analyze stock market statistics

drawn from a database which is exposed via a REST API. Through all this the user is meant to get a

clean, easy to use, experience enhancing their ability to buy and sell stocks with additional

information. Users can navigate between multiple different dynamic pages in search of information

pertaining to the stock market. This includes a search by industry and stock name to find specific

symbols that users are looking for and a “Quote” which gives them the latest prices and volume of the

stock. The price history of a stock is also available once the user has logged in. Once given a range of

dates and the symbol, the price history produces all price and volume information on the stock

between those dates. The user can log in, log out and register via their email and password.

The site is filled with functionality, including allowing users to view the price and volume of stocks in

a graph format on the same graph in the price history tab. This chart also has the ability to zoom in

and out, pan, add or remove sets of data that the user doesn’t want to include. The price history tab

is also able to be directly accessed from the symbols tab via clicking on the symbol desired. If the user

has logged in, the symbols tab will display the price history and all its information, which can then be

adjusted. If the user isn’t logged in then they are redirected to the log in screen and told that it is a

user only feature and they need to sign in to access the content. The forms of the app are sleek in

design and give user feedback for incorrect inputs and the header buttons adapt to whether the user

is logged in or not. The header also formats differently depending whether its in full-size or small

window mode.

Completeness and Limitations
The STONKS app is a React app with themed styling which cleanly presents its data in ag-grid-react

table components. This data comes from both the authenticated and unauthenticated query routes

with all end-points having been implemented. Users can register for an account which logs them into

the account, or separately log into that account, with authentication being assessed and access

granted to price history based upon it. Client-side processing via both filter functions and ag-grid-react

are used, including sorting and filtering, as well as server-side filtering via additional query parameters.

No excess querying of the server occurs, with requests only sent when new information is placed in

forms and the forms contain information to send.

Navigation around the site is handled through React Router, with Route, redirects, history and link all

used in appropriate cases. Reactstrap forms and input groups are used for data entry and every input

is positioned appropriately and is of the type of input which is best suited for the data being inputted,

such as date gathers to gather dates. Chartjs with its react wrapper are used to display the price and

volume data in the price history tab, also adapting to the users choice of dates and symbol.

Additionally, the header of the app dynamically adapts to the users state of log in, the symbols table

links to the price history tab and displays the symbol that was selected and the chart in price history

can be zoomed in, panned and have the user customize which data set they would like to see. All

errors from the server and client are handled and in an appropriate format and are told to the user so

they can have an easier time interacting with forms. The site itself is themed to the stock market, with

the front page, header title, logo and name of the site being in reference to the widely popular stock

trading meme. Overall, based on the assignment’s specification and the current state of the STONKS

web application, the web application completely fulfills the requirements of a grade of 7.

Use of End Points

/stocks/symbols

The symbols endpoint is used for the Symbols tab. By default, it shows the ‘all’ request which

displays all of the industries and their symbols. Changing the industry via drop down queries the

symbols end point for the specific industry. The stock name input can be used to filter client-side

within the currently selected industry for the desired company. The data is placed in a table and is

able to be sorted, and clicking a symbol links to the price history page.

/stocks/{symbol}

The symbols endpoint is used for the quote tab. By default, it only shows a form with the word

‘symbol’ and an empty table. Putting in a symbol and submitting produces information in the table

/stocks/authed/{symbol}

The authed endpoint is used for the price history tab. If the price history url has query parameters,

the price history will display for that symbol, else the form is left blank for users to input a symbol

and two dates. The data is displayed in a sortable, filterable table and chart. Unauthorized access to

this page is not allowed and the JWT token is checked, but if occurs, no information is displayed.

(Image is zoomed out)

/user/register

The register contains a form which allows an email and a password. When submitted, it is posted to

the database and redirects to the home screen since it automatically logs them in, unless it is invalid

in which it gives an appropriate response as to why it didn’t go through.

/user/login

The login contains a form which allows an email and a password. When submitted, it retrieves a JWT

token which is stored and then redirects. If the form data is invalid the errors are handled and an

appropriate message is given to the user.

Modules used

Ag-grid-react

Module to provide fully-featured table components, including sorting and filtering

 https://www.ag-grid.com/react-grid/

Bootstrap

Module to provide a CSS Framework to provide styling to the website

 https://getbootstrap.com/

Reactstrap

Module to provide prebuilt styled form and navigation components, including inputs, buttons and

drop downs, built on Bootstrap

https://reactstrap.github.io/

Chartjs

Module to provide fully-featured charts in JavaScript, including bar graphs and line graphs

https://www.ag-grid.com/react-grid/
https://getbootstrap.com/
https://reactstrap.github.io/

https://www.chartjs.org/

React-Chartjs-2

A react wrapper for ChartJs making it easier to use as function based components

https://www.npmjs.com/package/react-chartjs-2

Chartjs-plugin-zoom

A plugin for Chartjs that adds zoom and pan functionality

https://github.com/chartjs/chartjs-plugin-zoom

jsonwebtoken

A module for handling JWT’s from the database for authentication

https://www.npmjs.com/package/jsonwebtoken

https://www.chartjs.org/
https://www.npmjs.com/package/react-chartjs-2
https://github.com/chartjs/chartjs-plugin-zoom
https://www.npmjs.com/package/jsonwebtoken

Application Design

Navigation and Layout
The navigation starts off at the home page “/” and

the header bar across the top. This header across

the top is used since it is standard for most websites

and allows easy access to all pages available in the

app. The STONKS and icon provide the link back to

the home page, as well as typing any address that

isn’t recognized by the website. This was chosen

since it is standard to have the icon link back to the

home page and looks a lot better if instead of a 404,

which was considered, it simply returns the website

back to home. When the width of the app is

restricted, the header bar turns into a hamburger

with a drop-down menu offering the same options,

which was included so the app retained its form

when the tab is dragged. Logging in and/or

registering redirects to the home page and the log

in, register and price history all change to give

notice that the user has logged in. This could be

improved by making it go back to the page the user

came from which would require handling edge

cases like not returning to the register page. The

pictures of how the UI is meant to look are somewhat how it end up being executed, except for the

page structure since the register was actively

changed from just registering, to also logging in,

since it is less clicks for the user. Once the user has

chosen a page they will see the layout of the

forms. The form design is slightly lacking in terms

of aesthetics, with the login/registration forms

having duplicated words which doesn’t look great.

However, placing them without labels makes it

look too small for a login page and there was not

enough time to properly work with modals.

However, functionally they work well, with them

being as responsive as any other sites forms. The

symbol, quote and price history all have forms

which are attempting to be as simple as possible

and centered for ease of use, rather than the

weird white space left by left-align. The price

history from date is slightly annoying since the

default upon opening to input a date is the current

date, and the data starts 3 months ago. The dark

mode style UI was chosen since it is easier on the

eye then bright white, especially at night, and

saves the users battery (Wilson, 2020).

Technical Description

Architecture
The architecture of the application consists of a

separated component, API, page layout. The pages are

in the pages folder and used in the app.js file which

handles the routing. The folder structure consists of the

pages, images, apis, css and components. These were

chosen as mixing them would be confusing, and there

are enough components to warrant separating the apis

and css. It would be unwise to place images amongst

script files. In times when JSX formatting is helpful, the

files are JSX, and when not, they are JS.

The flow of data around the app works via the apis.js exporting the functions

to get and post from the server, with the searches and request information

being placed in props and given to them. The pages consist of the page,

wrapped in a div, and then a function in the same file which makes up the

majority layout and states involved on the page. Components, such as the financial chart are imported

and have their data passed into them via props. While the login and register could have their apis be

separate files, the overall script size was small enough to warrant keeping all the components

together, although the app is designed so they may be spread out if further work increases their size.

The CSS files are imported into the appropriate places with files with inputs inputting the input colors.

Authorization, formatdate and searchcomponents are used widely across the app and thus are called

upon when necessary. The register API sends the login API if the register is complete and uses the

login API to do the redirect. All code is commented and formatted in an easy to read way and the file

structure allows for simple scope expansion, understanding and editing, making it really easy to edit

my existing code and expand upon it.

Test plan

Task Expected Outcome Result Screenshots

Click on STONKS logo Navigate to home page PASS -

Click on Header Links Navigate to correct page PASS -

Access price history while logged out Redirect to login PASS Figure 2

Click on symbol while logged out Redirect to login PASS Figure 2

Shrink page Hamburger with list appears PASS Figure 2

Log in with invalid credentials Error feedback appears PASS Figure 2

Register with invalid email Error feedback appears PASS Figure 1

Register with existing user information Error feedback appears PASS Figure 3

Register with valid information Directly login PASS Figure 4

Login with valid information Redirected to home PASS Figure 4

Search by industry and name in symbols Returns search information PASS Figure 9

Search symbol and date in price history Returns search information PASS Figure 4

Search by symbol in quote Returns search information PASS Figure 10

Search incorrect dates Error feedback appears PASS Figure 5

Search for 1 day/ no date Return search without chart PASS Figure 6

Search for a single date Return search with boundary PASS Figure 4

Search for a bad symbol Error feedback appears PASS Figure 7

Edit chart – zoom, pan, remove line All work PASS Figure 8

Search for quote symbol Return search PASS Figure 9

Difficulties / Exclusions / unresolved & persistent errors /

The major roadblocks that I had were dealing with the differences between javascript with React and

the previous programming languages. The use of arrow functions using { } and objects using { }

repeatedly made my code not work since on occasion, I didn’t realize the data I was processing was

encapsulated in an object. Once I realized this, I was able to appropriately flow the data from the fetch

to the table. Another was the error handling for the project, since no internet connection returns a

different error to the ones generated by the API, and the APIs had to be caught twice due to the use

of useEffect and my inadequacy. Errors that still persist involve non-unique children and the use of

location as an update forcer which is bad practice, but these do not crash or limit the application in

anyway.

Extensions
Future extensions for the application would involve cleaning up the UI, expanding the database

dataset/ using an official stocks api and adding the functionality to trade stocks. Even further

dynamic error handling like with the login would be great for the rest of the application.

User guide
To begin with, you will start off on the home page. For all of the following pages, make sure you are

connected to the internet, though if you disconnect, the website will tell you. Across the top will be

the header bar which contains links to this home page – via the STONKS logo, the symbol page,

quote page, price history page – which will be restricted right now, the log in page and the register

page. You may navigate to any one of these pages except the price history page, since it will redirect

you to the login page. You may also scroll down to see our helpful tips on the home page.

Once you have clicked the symbols tab you will be in the symbols page. From this page you can get a

list of symbols that match your search criteria. By default, all industries are selected and no filter is

applied. Clicking the dropdown button (with industry on it) will bring up the list of possible

industries. Putting anything in the stock name box will filter the data to only bring back the stocks

that match. When selecting a new industry the stock name will remain in the box and continue to

filter.

If you select the Quote tab then you will go to the page where you can get a quote. In this tab you

can search for a stock symbol. By default, the table is empty.

Once you have searched for a symbol then the quote will appear in the table. If you don’t enter a

valid symbol then the box will tell you that there is a problem and how to address it.

If you click on price history while it is restricted, or the log in button, then you will be directed to the

Log In page. To Log in, you need to register with an account. To do this, you can click the register

button at the top right and be greeted by the register page.

Enter a valid email and password and you will be registered and immediately logged in, going to the

home page. If you try to register with an email that isn’t an email address, the app will ask you to. If

you try to register with an existing account then it will also tell you.

Once you have registered and come back to the site, you should go to the log in page. Here you can

log in so that you can access the price history tab.

Log in with a registered email and password and if it is correct then it will transport you back to the

home page. If you have attempted to log in and your email and password is incorrect, then it will tell

you so.

Once you have logged in and be directed to the home page, you will notice that the price history tab

no longer says that it is restricted and there is an option to log out.

Now you can go to the price history tab or log out. In the price history tab you will see three input

boxes. One of these is for a symbol and the other are date boxes, a “TO” and a “FROM”.

The Stock Symbol box is for the symbol you wish to know the data for. The from box is the date in

which stock data after it will be listed. The to date is the date in which stock will be listed to. Putting

none in produces the most current result. Putting in one or the either provides data from or to that

date. Putting in both produces data between those dates. If the dates are outside the range or the to

is before the from, then no data is shown and an error message will pop up below

If you put in valid dates and a valid symbol, the data will display in the table and in the chart

The data in the table can all be sorted, with price and volume able to be filtered. The chart can have

each set of data removed or added by clicking the legend, and can be zoomed in or out. If the user

chooses to they can also access the price history tab through the symbols menu by clicking the

symbols (only if they are logged in), upon which it will load all data for that stock symbol.

When the user decides to log out, no matter what tab they are in, they will be directed to the home

page and the top bar will go back to the way it originally was with price history (restricted), login and

register options available. On the home page you can scroll down and see someone helpful site

promises.

References
Wilson, S. (2020). What’s Dark Mode, Anyway?. Retrieved 12 May 2020, from

https://www.braze.com/perspectives/article/whats-dark-mode-anyway

Appendix

Figure 1

Figure 2 Figure 3

Figure 4

Figure 5

Figure 6

Figure 7
Figure 8

Figure 9

Figure 10

