

2020

Declan Barrett

N10219358

5/10/2020

CAB230 Stocks API – Server Side

1

Contents
Introduction .. 2

Purpose & description... 2

Completeness and Limitations .. 2

End Points ... 2

/stocks/symbols .. 2

/stocks/{symbol} ... 3

/stocks/authed/{symbol} .. 3

/user/register .. 3

/user/login .. 3

Modules used .. 3

Technical Description .. 4

Architecture .. 4

Security ... 4

Test plan .. 5

Difficulties / Exclusions / unresolved & persistent errors... 5

Extensions ... 6

Installation guide .. 6

References .. 7

2

Introduction

Purpose & description
The Stocks REST API is designed to allow client-side apps to GET stock market statistics and POST user

information, to and from a database. Through all this the API is meant to be clean, easy to query,

secure and enhance the functionality of any client-side app that uses the API. Apps can get an array of

information from the API, such as dated stock data, and have this data filtered by specific filters. The

API can also handle the storage and security of user’s login information and have the server check

whether their information is

valid or not.

The API’s ease of use is

enhanced by its interactive

documentation which allows

developers to view sample GETs

and POSTs, and input search

parameters into these

examples and actively query the

database from within the

documentation. Behind the

scenes, the API also has logging

functionality to help with its

management and security, is

invulnerable to SQL injection

attacks through the use of a SQL

query builder and is a TLS server

using self-signed certificates.

The API is also reliable since it

runs all day and all night, seven

days a week, and can

automatically restart itself if it

crashes for any unforeseen

reasons.

Completeness and Limitations
The Stocks REST API is a successful deployment of an Express API which supports all of the endpoints

and interacts successfully with the database. The Swagger docs has been successfully deployed and

can query the API and the site is secured using Helmet and Knex. All filtering, including time and

industry, work and the authenticated route requires authentication to respond with data. Registration

and login and JWT token handling have been successfully completed. All error responses have the

correct messages and statuses. The site uses Morgan for database logging and uses self-signed

certificates to achieve TLS making it a HTTPS site. The server is deployed on Linux and is running as a

daemon using pm2.

End Points

/stocks/symbols

This is fully functional. When hit the endpoint returns all symbols with their name, industry and

symbol, unless a query filter has been sent. The query filter is checked to see if it is called industry

3

and if it is, the database query is changed to only retrieve symbols which have the query as part of

their industry. If none match, an error is sent to the user, else the API responds with the requested

information

/stocks/{symbol}

This is fully functional. When requested the endpoint returns the symbol and its current date data. If

no symbol is provided, or the symbol does not exist on the database, an error is returned. If a date is

supplied, an error returns specifying that they should use the authed endpoint.

/stocks/authed/{symbol}

This is fully functional. When the API is hit with a valid authorization token and symbol it returns the

current symbol data. If it is not a valid token, it will respond with an access denied error. If a date is

supplied, it will search with the date (either from or to), and If the date filtering provides nothing it

will supply a queried date not found. If the endpoint is queried with rubbish query parameters then

it will ask for the from and to parameters.

/user/register

The register endpoint is fully functional. When the API is posted an email and password it checks to

see if the email already exists, and if it does not then it creates the new user. If the user already

exists, it sends this error back. If there is incomplete post information, then it will also error and send

it back.

/user/login

This endpoint is fully functional. When the API is posted an email and password it checks to see if the

email already exists, and if it does then it checks the password. If the hashes and emails line up, then

it generates a JWT token and sends it back. If there is an error, such as the passwords do not match,

or there is missing information, then the appropriate error is returned.

Overall, based on the assignment’s specification and the current state of the Stocks REST API the web

application completely fulfills the requirements of a grade of 7.

Modules used
No additional modules used

4

Technical Description

Architecture
The architecture of the API consists of a folder

layout with separated route, docs and application

layout. The routes are in the route folder,

consisting of index and user and used in the app.js

file. The index file is used for the stocks routes and

the user file used for the user routes – which more

specific routes placed first so that the more general

routes do not match first and display. The www file

is the bin and is used to start the server as https.

The swagger docs is in the docs folder. The public

folder has some CSS in it and the app.js, knexfile

and env are at the top level of the application. The

ENV file isn’t used in the current version but is kept

there in case it needs to be quickly changed to a

different port alongside. The knexfile is used to set

the details for connecting to the database, which is

done in the app.js file, and used in both the index

and user files. The www file initiates the server that

uses app.js. In the app.js file, the required modules

are linked and then the index and user routers are

run through and appropriate responses returned.

The layout could be modified and improved if the incoming API requests grew and a reverse-proxy

was needed and thus nginx could be implemented (NGINX, 2020). Any routes not handled by the

index or users have the swagger documents returned. The login route located in users sends a JWT

token, which is authenticated in the index folder when it is being requested for the authed route.

Security
Knex was used as the query builder for this assignment. Helmet was also used with default settings

enabled; no settings were changed or added, being used to set HTTP response headers to improve

security. Cors also adds HTTP headers telling the browser to access selected resources from different

origins. Morgan was used with dev logger mode selected, with additional header information

displayed as well. Bcrypt was used to hash passwords to be stored in the database and JWTs were

created when password hashes had been checked. JWT was used to check the JWT tokens when

they were sent to the API for the authed route.

5

Test plan

Difficulties / Exclusions / unresolved & persistent errors /

The major roadblocks that I had were dealing with the differences between the client side and server

side programming styles. Express was new to me and having everything branch off of it was a learning

experience. The flow and making sure the routes were handled as intended with no route stealing the

intended request to another route tripped me up a couple of times. The database used in the practical

made me stumble for a while since the database was returning that the query was successful but

nothing was appearing the users table. I figured it out that the email varchar(40) was not long enough

after managing to get a short email through. The logic surrounding the dates also made my brain melt,

but after a lot of thinking I managed to get it working as intended. I also started the swagger docs

before the yaml version was released and learning how swagger works with its layout of objects was

quite confusing, but I managed to get the first query working properly. A large problem later on in the

project was copying the server version (after implementing https) to my external hard drive. Linux

refused to copy random files every time I tried. I had to copy the project and then copy the routes

separately for some reason. All functionality was implemented, and no known bugs exist. The only

6

thing I wanted to get implemented that wasn’t included was to stop serving the swagger docs on all

non-handled routes.

Extensions
Future extensions for the application would involve expanding the database dataset to include more

recent data, adding the functionality to trade stocks and making the database update live with the

stock market. To trade stocks that database would need to store a lot more information about

currently owned stocks and positions for each person, quantities of money in their accounts and

would need an increased level of verification inline with Australian and International laws.

Installation guide
To install the API, first you need to download the API from whereever it is being stored. Then place it

where you want to be stored. The API is currently configured to run on a Linux system thus placing it

on a Linux system is reccommended. To run it, first make sure you have Node and MySQL installed. A

copy of visual studio code is also helpful for editing files. Then install the dependencies using the

command ‘npm install --save’ while inside the folder.

Next a MySQL Database using the stocks.sql and user.sql files will need to be created. These files

create the stocks table and users table. The password used for the MySQL database then needs to

be placed in the knexfile, so the API can query the database.

The API is also setup to offer https. A new private key and certificate will need to be generated and

placed at ‘/etc/ssl/private/node-selfsigned.key’ and ‘/etc/ssl/certs/node-selfsigned.crt’ respectively.

This is done using the openssl command and inputting the required details, including the ip address

of the current machine (example provided by QUT).

7

Run ‘npm start’ while in the API folder or start the API using pm2 from the /bin/www file, and the

API should be up and running. The API can then be queried from postman, using the array of tests at

https://github.com/frankisawesome/stocksapi-tests or simply visited via typing in the desired URL

and path. To use the API, follow the swagger docs provide on the / path.

References
NGINX. (2020). Welcome to NGINX Wiki! | NGINX. Retrieved 4 June 2020, from

https://www.nginx.com/resources/wiki/

https://github.com/frankisawesome/stocksapi-tests

